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Abstract

The space of human goals is tremendously vast; and yet, from
just a few moments of watching a scene or reading a story,
we seem to spontaneously infer a range of plausible motiva-
tions for the people and characters involved. What explains
this remarkable capacity for intuiting other agents’ goals, de-
spite the infinitude of ends they might pursue? And how does
this cohere with our understanding of other people as approx-
imately rational agents? In this paper, we introduce a sequen-
tial Monte Carlo model of open-ended goal inference, which
combines top-down Bayesian inverse planning with bottom-up
sampling based on the statistics of co-occurring subgoals. By
proposing goal hypotheses related to the subgoals achieved by
an agent, our model rapidly generates plausible goals without
exhaustive search, then filters out goals that would be irrational
given the actions taken so far. We validate this model in a goal
inference task called Block Words, where participants try to
guess the word that someone is stacking out of lettered blocks.
In comparison to both heuristic bottom-up guessing and exact
Bayesian inference over hundreds of goals, our model better
predicts the mean, variance, efficiency, and resource rationality
of human goal inferences, achieving similar accuracy to the ex-
act model at a fraction of the cognitive cost, while also explain-
ing garden-path effects that arise from misleading bottom-up
cues. Our experiments thus highlight the importance of unit-
ing top-down and bottom-up models for explaining the speed,
accuracy, and generality of human theory-of-mind.

Keywords: theory-of-mind, goal inference, open-endedness,
bottom-up heuristics, sampling, resource rationality

Introduction
Whether one is watching a play, reading a novel, or spend-
ing time with a friend at their house, inferences about others’
goals and motivations often arise spontaneously and unbidden
(Moskowitz & Olcaysoy Okten, 2016): Is the person crouch-
ing behind a tree trying to hide from, or spy on someone?
Does the strange warrior who has just entered the fray of bat-
tle intend to kill the protagonist, or save them? When your
friend gets up from the couch and walks to the kitchen, are
they getting a snack, or making some tea? Despite the seem-
ingly infinite space of possible goals, we have little trouble
in coming up with plausible hypotheses, and then — as the
story unfolds — filtering out those that fail to explain our ob-
servations. If the warrior defends our protagonist from a stray
arrow, they are likely an ally. If your friend opens the fridge,
they are probably having a snack. What computational mech-
anisms underlie this ability to both hypothesize and evaluate
the goals that explain others’ behavior, even when the set of
possibilities is vast and open-ended?

While psychologists have long studied how people both
generate (Heider & Simmel, 1944; Graesser et al., 1994; Has-
sin et al., 2005; Van Overwalle et al., 2012) and evaluate
hypotheses about the goals that other agents have (Gergely
& Csibra, 2003; Jara-Ettinger et al., 2015; Liu et al., 2017),
computational models of human goal inference have focused
on the latter, assuming a small and fixed set of possible goals,
then modeling how people infer their relative likelihoods
(Baker et al., 2009; Ullman et al., 2009; Kleiman-Weiner
et al., 2016; Vered et al., 2016; Jara-Ettinger et al., 2019).
This leaves open how people come up with plausible goals
in the first place, especially in large hypothesis spaces where
enumeration over all possibilities makes inference intractable
(Kwisthout & Van Rooij, 2013; Blokpoel et al., 2013). How
then are people solving this seemingly intractable problem (if
they do so at all)? Even though recent advances in Bayesian
inverse planning have shown how modeling the plans of other
agents (Zhi-Xuan et al., 2020; Alanqary et al., 2021) and in-
ferring goals from static scenes (Chandra et al., 2023) can be
made orders of magnitude more efficient, they do not address
the key challenge posed by open-ended settings: Efficiently
generating plausible goal hypotheses.

In this paper, we develop an algorithmic account of open-
ended goal inference, which combines top-down Bayesian in-
verse planning and bottom-up sampling in a sequential Monte
Carlo (SMC) algorithm (Del Moral et al., 2006). Instead of
exhaustively enumerating the space of goals, our model as-
sumes that humans are familiar with the statistics of their en-
vironments (Griffiths & Tenenbaum, 2006), and can rapidly
generate relevant hypotheses based on contextual, data-driven
cues (Schulz, 2012; Phillips et al., 2019). In particular, we as-
sume familiarity with the statistics of co-occurring subgoals,
such that complete goals can rapidly be generated once some
subgoals have been achieved. Our model then filters these
goals according to the principle of rational action (Gergely &
Csibra, 2003; Baker et al., 2009), keeping those that best ex-
plain the agent’s actions. We evaluate this model in Block
Words, a game where observers have to guess the word
that someone is stacking out of lettered blocks (Ramı́rez &
Geffner, 2010; Alanqary et al., 2021). Subgoals correspond
to partial words, so observers can generate plausible goals by
“auto-completion”. However, this bottom-up strategy is in-
sufficient in general — some goals may be irrational given
the actions observed so far, necessitating inverse planning.



To test the predictions of our model, we conduct an ex-
periment where human participants play a series of rounds
in Block Words. Each round is carefully designed so as to
elicit various patterns of inference — some where bottom-
up guessing is sufficient, some where inverse planning is
required to filter out irrational goals, and some intended to
produce garden-path inferences that exact Bayesian reason-
ing should avoid. As alternatives to our model, we test pure
bottom-up sampling, as well as an exact Bayesian baseline
that performs enumerative inference over all English words
that can be spelled in each round. We compare these mod-
els by measuring their similarity to human responses in terms
of their mean, variance, sample efficiency, and computational
cost, allowing us to determine their fidelity to human goal
inference in both behavioral and algorithmic terms.

Computational Model
Building upon prior accounts of human goal inference (Baker
et al., 2009; Zhi-Xuan et al., 2020; Alanqary et al., 2021),
we assume that observers perform approximately Bayesian
inference over a generative model of how other agents plan
and act to achieve their goals:

Goal Prior: g ∼ P(g) (1)
Online Planning: πt ∼ P(πt |st−1,πt−1,g) (2)
Action Selection: at ∼ P(at |st−1,πt) (3)
State Transition: st ∼ P(st |st−1,at) (4)

Here g is the agent’s goal, and at each step t, πt is the
agent’s current plan or policy, at is the agent’s action, and st is
the state of the environment. Given a sequence of states s0:T
and actions a1:T , the observer’s task is to infer the goal g by
approximating the posterior P(g|s0:T ,a1:T ). Approximating
this posterior presents numerous computational challenges.
Among these, our focus is on the challenge posed by open-
ended settings, where the set of possible goals g ∈ G is large
or potentially infinite. In this section, we first review recent
advances that render goal inference over fixed spaces algo-
rithmically tractable, before explaining how we can extend
these ideas to open-ended spaces.

Modeling Boundedly Rational Plans and Actions
Since computing the posterior requires simulating the plans
πt that an agent might follow to each goal g, this process is
also known as Bayesian inverse planning. In general this is
a difficult problem, because planning itself is a complicated
and often intractable task. However, as Zhi-Xuan et al. (2020)
show, this difficulty can be alleviated by treating agents as
boundedly rational planners, who spend only limited com-
putation at each step t on planning. We adopt a more recent
version of this architecture (Zhi-Xuan et al., 2024; Ying et al.,
2023), modeling agents that update a policy πt (i.e. a condi-
tional plan) that defines a Boltzmann distribution over actions
at that can be taken at state st−1:

P(at |st−1,πt) =
exp

(
−βQ̂πt (st−1,at)

)
∑a exp

(
−βQ̂πt (st−1,a)

) (5)

Figure 1: Illustration of open-ended goal inference in Block
Words via particle filtering. Initially, i is stacked on n, leading
pink to be proposed as a goal. In the next step, however,
t is stacked on p. This makes pink much less likely after
reweighting, and hence removed after resampling.

Here Q̂πt (st−1,at) denotes the estimated cost of the shortest
path to goal g from st−1 that starts with action at . As such,
πt assigns higher probability to actions along more optimal
paths to the goal, with β controlling the degree of optimality.
To compute Q̂πt (st−1,at) efficiently, we use real-time heuris-
tic search (RTHS), which updates the Q̂πt−1 values computed
for πt−1 via a search process guided by the Q-values them-
selves (Korf, 1990; Barto et al., 1995; Koenig & Likhachev,
2006). This process is deterministic, and limited to a com-
putational budget of up to size B (e.g. the number of search
iterations). As such, given G = |G | possible goals, the com-
putational cost of simulating the plans of an agent for T steps
(and hence exactly inferring their goals) is O(GBT ).

Bottom-Up Sampling of Plausible Goals
While the analysis above suggests that Bayesian inverse plan-
ning is not only tractable, but linear in computational com-
plexity, it neglects the fact that the number of goals G can
grow very large. As suggested by Blokpoel et al. (2013),
this might be because G itself grows exponentially with some
other natural parameter — in Block Words, for example, just
9-11 lettered blocks can be used to spell anywhere from 150
to 800 English words. But even without this exponential de-
pendence, a large value of G can quickly render (exact) goal
inference too costly to be algorithmically plausible.



How might people manage the complexity of their infer-
ences in these open-ended settings? We posit that in suffi-
ciently familiar contexts, people are familiar with the statis-
tics of co-occurring subgoals, such that given some sub-
goal γi, they can rapidly sample a complementary subgoal
γ j ∼ P(γ j|γi). This means that once an agent achieves some
subgoal γi — say, boiling a kettle of water, or stacking the
letter n on top of g — an observer can rapidly generate a
complete goal g = γi ∧ γ j — perhaps adding tea to the boiled
water, or spelling the word s o n g . These conditional
distributions can be efficiently learned using either neural net-
works or classical sequence models such as n-grams. Since
the goals in our study are English words, we use a character-
level n-gram model. Regardless of what sequence model is
used, a key property is that retrieval and sampling can occur
in essentially constant time (Guthrie & Hepple, 2010), pro-
viding a plausible mechanism for relevance-guided hypothe-
sis generation (Phillips et al., 2019; Schulz, 2012).

Bayesian Filtering of Bottom-Up Samples
Given the ability to rapidly generate plausible goals, it is
tempting to forgo inverse planning altogether. As Figure 1
illustrates, however, this strategy can go awry. Suppose you
see someone stack the block i on top of n k , and the
word p i n k comes to mind. But then you see t
stacked on top of p . Is p i n k still a plausible goal?
From a bottom-up perspective, p is still a likely completion
of i n k . But if we understand agents as rational plan-
ners, this no longer seems likely. If p i n k had been the
agent’s goal, stacking t on p would be quite suboptimal.

If humans actually engage in the reasoning above, then
modeling their inferences requires uniting top-down Bayesian
inverse planning with bottom-up cues. Following other
sampling-based accounts of sequential human inferences
(Daw & Courville, 2008; Vul et al., 2009; Thaker et al.,
2017), we model this integration with a sequential Monte
Carlo (SMC) algorithm (Algorithm 1), extending the Sequen-
tial Inverse Plan Search (SIPS) algorithm of Zhi-Xuan et
al. (2020). SMC algorithms are also known as particle fil-
ters, which approximate Bayesian posteriors by maintaining
a weighted set of hypotheses or particles, then updating the
weights of those particles as observations arrive (Del Moral
et al., 2006). At each step, they may also resample particles
according to their weights, or rejuvenate the particles, making
perturbations to the sample collection to increase hypothesis
diversity (Chopin, 2002; Lew, Matheos, et al., 2023).

A variant of this rejuvenation phase is where our bottom-
up samplers come in: As Algorithm 1 shows, after observ-
ing each state st and action at at step t, we use these sam-
plers as proposal distributions over goals Q(g|st ,at), gen-
erating N new goal hypotheses g (L4) based on bottom-
up cues. These new hypotheses assigned an importance
weight P(g,π1:t ,s0:t ,a1:t)/Q(g|st ,at), where the numerator
P(g,π1:t ,s0:t ,a1:t) accounts for how well the plans π1:t that
lead to g explain the actions a1:t , and the denominator
Q(g|st ,at) compensates for g having been sampled from the

Algorithm 1 Open-Ended SIPS for Goal Inference
1: Procedure OPEN-ENDED-SIPS(s0:T ,a1:T ,N)
2: Using: Q(g|st ,at), a bottom-up goal proposal.
3: For each step t from 1 to T do
4: Propose N new goals g from Q(g|st ,at).
5: Simulate policies π1:t for each new goal.
6: Compute weights P(g,π1:t ,s0:t ,a1:t )

Q(g|st ,at )
for new particles.

7: Update policies πt for previous goal samples g.
8: Multiply their weights by P(at |st−1,πt).
9: Resample full collection down to N particles.

10: Coalesce identical particles.
11: End
12: Return weighted collection of ≤ N goal hypotheses.
13: End

proposal (L5–7). Open-ended SIPS also reweights previous
samples based on how well they explain the current action
at (L7–8). Finally, we resample the particle collection back
down to N samples (L9), coalescing identical samples by
summing their weights (L10). Our algorithm thus imple-
ments the high-level logic described earlier: Incrementally
generate plausible hypotheses, evaluate them, then filter out
those that do not make sense. This can be viewed as an epis-
temic analogue to recent accounts of open-ended decision
making (Morris et al., 2021; Phillips et al., 2019).1

Experiments
We evaluated open-ended SIPS as a model of human goal in-
ference on a set of 16 scenarios in Block Words, a variant of
the classic Blocksworld domain where the goal is to infer the
word that an agent is spelling by stacking a tower of lettered
blocks. In contrast to previous Block Words tasks (Ramı́rez
& Geffner, 2009, 2010; Alanqary et al., 2021; Chandra et al.,
2023), we did not specify a fixed set of 5 to 20 goal words. In-
stead, we told participants that the goal might be any English
word between 3 to 8 letters long, with the implied restriction
that the word had to be spelled out of the available blocks.

Structure & Design Participants were first shown the ini-
tial layout of the blocks. They could then advance the sce-
nario, watching several actions play out as an animated video.
The video would then pause at a judgment point, giving par-
ticipants time to guess the word being spelled via text box
entry. Participants could add as many guesses as they liked,
and also remove any previous guesses that they no longer con-
sidered likely. They could then advance to the next judgment
point, continuing in this way until the end of the scenario.
Each participant was presented 8 out of the 16 scenarios, af-
ter first completing a tutorial and a comprehension quiz. To
incentivize high quality responses, we paid participants a re-
ward based on the accuracy of their guesses ($0.1/n for ev-
ery correct answer out of n guesses), and presented the bonus
point breakdown after they completed each scenario.

1While this algorithm has O(T 2) runtime due to rejuvenation, in
practice runtime is closer to O(T ) due to reuse of likelihood com-
putations in L6. A slight variant can guarantee O(T ) runtime by
forgetting previous observations (Beronov et al., 2021).
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Figure 2: Human similarity and accuracy of goal inference models, measured in terms of (a) IoU with mean human inferences,
and (b) average goal accuracy. Each bar corresponds to a model (and sample size N), while each column is a condition. We
computed human-human IoU through repeated sampling of 50-50 splits. Error bars denote 95% confidence intervals.

Experimental Conditions To tease apart the predictions of
our model from those that would be made by either exact
Bayesian inference or pure bottom-up proposals, we designed
our 16 scenarios to fall into one of four conditions:

Bottom-Up Friendly. Words are stacked more-or-less lin-
early, such that it is sufficient to guess words that complete
either the most recently stacked tower, or any partial word.

Irrational Alternatives. Blocks are stacked so that some
bottom-up guesses are made irrational, like our p i n k
example from Figure 1.

Garden Paths. Cases where bottom-up guessing suggests a
plausible but misleading interpretation of the first few actions,
which turn out to be merely instrumental for the true goal.

Uncommon Words. The true goal is either a longer or more
uncommon word (aft, chump, wizard, banish), which people
and bottom-up proposals might find difficult to initially guess.
Otherwise similar to the first condition.

Participants We recruited 100 US participants fluent in En-
glish via Prolific (mean age 39.4; 44 women, 54 men, 2 non-
binary), such that every scenario was completed by 50 in-
dividuals. Participants were paid US$15/hr along with the
bonus described earlier. Familiarity with word games var-
ied, with 17 reporting that they played word games daily, 22
weekly, 30 every 1-2 months, 11 yearly, and 20 almost never.

Despite comprehension checks, a subset of participants did
not follow instructions correctly, either because they never
updated their guesses (36 out of 800 scenario responses), or
only added guesses without removing them (139 out of 800).
As such, we excluded such responses from our analysis.

Model Configuration We implemented open-ended SIPS
using the particle filtering extension of the Gen.jl probabilis-
tic programming framework (Zhi-Xuan, 2020; Cusumano-
Towner et al., 2019), and the Blocksworld domain in the

Planning Domain Definition Language (Zhi-Xuan, 2022; Mc-
Dermott et al., 1998). We fit parameters via grid search to
improve model similarity with humans as measured by the
intersection over union (IoU) between distributions (see Ap-
pendix), which gave an inverse temperature of β = 1.0, plan-
ning budget of B = 100, and prior P(g) fitted to tempered
word frequencies from the wordfreq library (Speer, 2016),
using the 3of6game word list as our dictionary (Beale, 2016).
We ran open-ended SIPS with N ∈ {2,5,10,20,50} particles,
taking the mean and variance over M = max(10,200/N) tri-
als. We describe the proposals Q(g|st ,at) in the next section.

Alternative Models As alternatives to our hybrid SMC
model, we tested both (i) exact inference via fully enumer-
ative Bayesian inverse planning over all valid English goal
words (145–807 words, depending on the scenario) and (ii)
pure bottom-up sampling using a subgoal-conditioned pro-
posal. Exact inference was implemented using the same
model parameters as open-ended SIPS, except that all goals
were considered as hypotheses from the outset.

For the bottom-up proposal, we sampled complete words g
by conditioning an n-gram model on some partial word that
can be stacked from blocks in the current state st . We used
n = 5, fitting the n-gram on the same tempered word frequen-
cies used for the prior P(g). To decide which partial word
to complete, the proposal first considers the tower stacked by
the last action at , sampling a completion if it is sufficiently
word-like (as determined by the n-gram model). If not, it con-
siders if the last block was moved because the agent intended
to reach some block underneath it, and tries to form a word
with one of those blocks. If no way of using those blocks is
sufficiently word-like, the proposal samples a random tower
in state st (weighted by how word-like it is), then samples a
completion. Other proposals are discussed in the Appendix.
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Figure 3: Step-by-step inference results on two illustrative Block Words scenarios. On the left, we show the sequence of
actions, and on the right, the 5 most probable goals at each step for humans and our models (N = 2 for the sampling-based
methods), averaged across humans and algorithm runs (error bars reflect the standard error). In (a), only the bottom-up proposal
fails to infer that m being stacked on f at t = 10 implies that make and fake are less likely than take. In (b), both open-ended
SIPS and humans exhibit sticky inferences at t = 8, assigning high weight to atom and custom as guesses as a result of the
garden path trajectory. In contrast, the bottom-up proposal displays a recency bias since it does not store previous guesses.
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(b) Sample efficiency of inference methods
over time, measured by the number of unique
tracked hypotheses (averaged over scenarios).
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reward of accurate goal inference.

Figure 4: Response variance, sample efficiency, and cognitive cost trade-offs vs. humans. Ribbons show 10th-90th quantiles.

Results
We analyzed human responses and model outputs by compar-
ing them in terms of distribution similarity (Fig. 2a), average
accuracy (Fig. 2b), step-by-step inferences (Fig. 3), response
variance (Fig. 4a), sample efficiency (Fig. 4b), and resource
rationality (Fig. 4c). Additional results (e.g. accuracy vs.
runtime) and sensitivity analyses are in the Appendix.

Open-ended SIPS is most similar to human inferences
across all conditions. As we predicted, human inferences
showed the highest similarity with open-ended SIPS (IoU =
0.33–0.36 for all N) compared to exact inference (IoU = 0.31)
or bottom-up guessing (IoU = 0.30–0.32), with N = 2 sam-
ples being the most similar. Notably, open-ended SIPS was
more similar to humans in the Irrational Alternatives condi-
tion, with both achieving considerably higher accuracy than
the bottom-up only heuristic, indicating that humans indeed
engage in inverse planning. Our model was also more similar
to humans than exact inference, especially in the Bottom-Up
Friendly and Garden Path conditions, consistent with the hy-
pothesis that humans engage in bottom-up sampling.

Step-by-step human inferences are best matched by
open-ended SIPS. The step-by-step comparisons in Figure
3 help to elucidate these aggregate findings. On one hand,
open-ended SIPS and the proposal-only model make initial
guesses that are biased towards words that complete the first
few stacked letters, whereas the exact posterior is much more
uncertain. On the other hand, humans account for the ra-
tionality of the observed actions when drawing inferences
(e.g. Figure 3(a), t = 10), just like our exact and approximate
Bayesian inverse planning algorithms.

Our model’s algorithmic properties best explain human
variance and guess counts. In Figure 4, we compare the
algorithmic properties of the models. Human variance was
best matched by open-ended SIPS with N = 2. Bottom-up
proposals had lower variance, and did not prune samples as
effectively as sample-matched counterparts. Exact inference
is zero-variance, but at the cost of tracking drastically more
hypotheses. As such, it was dominated by open-ended SIPS
in terms of net reward when accounting for cognitive costs
(Fig. 4c). The comparison with pure bottom-up proposals

was more nuanced. If reweighting a sample via inverse plan-
ning is costly enough, pure bottom-up guessing can be more
resource-rational (Lieder & Griffiths, 2020). However, there
is a large range of cost-ratios where it pays to do inverse plan-
ning. Since humans attained more reward than all proposal-
only baselines in the Irrational Alternatives condition, this
suggests that they indeed find inverse planning worthwhile.

Discussion
In comparison to alternative models, our sampling-based ac-
count of open-ended goal inference is best supported on both
empirical and theoretical grounds, providing an algorithmi-
cally plausible explanation for the speed and flexibility of hu-
man goal inference. Still, our experiments find that humans
remain more similar to themselves (IoU = 0.44) than our best-
fitting model (IoU = 0.35). Part of this might be explained by
the discrepancy between the statistics of how humans guess
in word games versus the text corpus frequencies that inform
our model. This could be addressed by deriving a prior and
proposal from human guesses. Humans also appear to exhibit
stickier inferences in garden path cases, whereas open-ended
SIPS tends to avoid them when run with larger values of N
by proposing new goals at every step. This suggests that hu-
mans may be adaptive in deciding when to rejuvenate their
hypotheses (Del Moral et al., 2012; Elvira et al., 2016). Fi-
nally, unlike our model, humans might forget older observa-
tions, becoming more inaccurate, but also more efficient at
inference. SMC algorithms that selectively forget past obser-
vations could mimic this (Beronov et al., 2021).

Another open question is how bottom-up sampling can be
made more general. In future work, we plan to explore how
the statistics of co-occurring subgoals can be distilled from
web-scale language models (West et al., 2022) into domain-
specific models for rapid hypothesis generation. These statis-
tics might be augmented by static analysis of environment
models, automatically determining which subgoals are instru-
mental for other goals (Blum & Furst, 1997). Such mecha-
nisms for flexible domain adaptation could provide an even
richer picture of how we contend with the infinitude of ends
that others pursue, even in the face of our very finite means.
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Appendix
Experiment Interface
The web interface used by participants is shown in Fig-
ure A1. At each judgment point, participants typed their
guesses into the text box, which validated whether the guess
was between 3 and 8 characters and used only the letters
that were available. Participants could also remove their
guesses by clicking the

⊗
symbol next to each guess. The

list of guesses was converted into a probability distribution
by assigning a probability of 1/n to each word among the
n guesses. Participants could rewatch the most recent seg-
ment of the animation by pressing the Replay button, or re-
watch the whole animation up to the judgment point by press-
ing the Replay All button. This interface is accessible at
https://block-words.web.app/?local=true.

⟲⟲ ↶↶ ▶▶

⏎⏎

⨂

⨂

⨂

⨂

⨂

Figure A1: Interface for our open-ended goal inference task.

Model Fitting and Sensitivity Analysis
Our model of open-ended goal inference is characterized by
two sets of parameters: The parameters of the generative
model P(g,π1:t ,s0:t ,a1:t), and the parameters of the inference
algorithm which approximates P(g|s0:t ,a1:t). We fit the pa-
rameters of the generative model across the following ranges:

• Goal prior word temperature Tw ∈ {1,2,4,8,16}
• Inverse temperature β ∈ { 1

4 ,
1
2 ,1,2,4}

• Planning budget B ∈ {5,10,20,50,100,200,500}
• Replanning cadence ∆t ∈ {1,2}
• RTHS search strategy σ = A* or BFS

Tw controls tempering of the wordfreq-derived word fre-
quencies used for the goal prior P(g), and β controls the
optimality of action selection. B is the planning budget for
real-time heuristic search (RTHS) algorithm, ∆t is the num-
ber of timesteps between each call to RTHS that updates the
policy πt , and σ controls how nodes are expanded by RTHS,
which is done either via A* search around each neighbor of
the current state st (guided by the FF heuristic as the default
Q̂πt value) as in LSS-LRTA* (Koenig & Sun, 2009), or via
breadth-first search (BFS) around the current state st , as in
LRTA*-LS (Hernández & Meseguer, 2007).
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Figure A2: Human-model similarity (IoU) across generative
model parameters when using exact Bayesian inference.

For the inference algorithm, we fit these parameters:

• n-gram word temperature Tw ∈ {1,2,4,8,16}
• n-gram termination bias ε ∈ {0,0.05,0.1,0.15,0.2,0.25}
• Bottom-up proposal strategy Q ∈ {LAST-AND-NEXT, ...}
• Number of samples N ∈ {2,5,10,20,50}

Tw tempers the word frequencies used to fit the n-gram model
for the bottom-up proposal Q, and is matched to be the same
value used for the goal prior P(g). To capture the difficulty
of guessing longer words, we modified the n-gram to have
an additional ε probability of terminating after each charac-
ter. For simplicity, we fixed the context length of the n-gram
model to n = 5. Various ways of implementing the bottom-up
proposal Q are discussed in the next section. We also vary the
number of particles N used by open-ended SIPS.

Fitting procedure. Model fitting proceeded in two stages.
We first fit the generative model parameters to improve
similarity with humans, using exact inference to factor out
stochasticity or performance issues in the inference algorithm
from the quality of the generative model itself. Instead of
Pearson’s correlation coefficient (commonly used in other
BToM studies), we used the intersection-over-union between
human and model distributions (i.e. the Jaccard index) as our
similarity metric, since it does not consider two probability
vectors similar just because they both contain many zeros.
Having determined values of B = 100, ∆t = 2 and σ = BFS
that led to the most similarity with humans under the con-
straint of a reasonable runtime, we then fit the parameters of
the open-ended SIPS algorithm. The best fitting inference
parameters were Tw = 4 (which was matched with the goal
prior’s Tw), ε = 0.05, Q = LAST-AND-NEXT, and N = 2.

Generative model sensitivity analysis. Figure A2 shows
how similarity with humans varies across generative model
parameters when using exact Bayesian inference. A higher
planning budget B leads to a stronger fit, showing the impor-
tance of computing a good estimate of the agent’s policy via



2

5

10

20

50

Open-Ended SIPS, ε = 0.0

0.206
(0.001)

0.201
(0.001)

0.203
(0.001)

0.204
(0.001)

0.202
(0.001)

0.309
(0.002)

0.298
(0.002)

0.305
(0.002)

0.303
(0.002)

0.307
(0.002)

0.348
(0.002)

0.334
(0.002)

0.336
(0.002)

0.342
(0.002)

0.341
(0.002)

0.346
(0.002)

0.332
(0.002)

0.340
(0.002)

0.336
(0.002)

0.341
(0.002)

0.341
(0.002)

0.336
(0.002)

0.327
(0.002)

0.333
(0.002)

0.329
(0.002)

Open-Ended SIPS, Tw = 4.0

0.348
(0.002)

0.334
(0.002)

0.336
(0.002)

0.342
(0.002)

0.341
(0.002)

0.354
(0.002)

0.336
(0.002)

0.342
(0.002)

0.341
(0.002)

0.341
(0.002)

0.349
(0.002)

0.351
(0.002)

0.330
(0.002)

0.341
(0.002)

0.342
(0.002)

0.351
(0.002)

0.341
(0.002)

0.337
(0.002)

0.337
(0.002)

0.344
(0.002)

0.337
(0.002)

0.322
(0.002)

0.330
(0.002)

0.336
(0.002)

0.341
(0.002)

0.349
(0.002)

0.343
(0.002)

0.322
(0.002)

0.338
(0.002)

0.343
(0.002)

n-gram Word Temperature Tw

1.0 2.0 4.0 8.0 16.0

2

5

10

20

50

Proposal Only, ε = 0.0

0.205
(0.001)

0.202
(0.001)

0.201
(0.002)

0.203
(0.002)

0.206
(0.002)

0.280
(0.002)

0.280
(0.002)

0.278
(0.002)

0.287
(0.002)

0.286
(0.002)

0.304
(0.002)

0.304
(0.002)

0.304
(0.002)

0.312
(0.002)

0.316
(0.002)

0.306
(0.002)

0.308
(0.002)

0.311
(0.002)

0.312
(0.002)

0.316
(0.002)

0.306
(0.002)

0.311
(0.002)

0.298
(0.002)

0.310
(0.002)

0.308
(0.002)

n-gram Termination Bias ε
0.0 0.05 0.1 0.15 0.2 0.25

Proposal Only, Tw = 4.0

0.304
(0.002)

0.304
(0.002)

0.304
(0.002)

0.312
(0.002)

0.316
(0.002)

0.303
(0.002)

0.307
(0.002)

0.309
(0.002)

0.315
(0.002)

0.318
(0.002)

0.300
(0.002)

0.297
(0.002)

0.307
(0.002)

0.314
(0.002)

0.317
(0.002)

0.300
(0.002)

0.306
(0.002)

0.297
(0.002)

0.303
(0.002)

0.309
(0.002)

0.291
(0.002)

0.294
(0.002)

0.286
(0.002)

0.298
(0.002)

0.302
(0.002)

0.275
(0.002)

0.275
(0.002)

0.282
(0.002)

0.288
(0.002)

0.291
(0.002)

0.20

0.25

0.30

0.35

0.40

0.20

0.25

0.30

0.35

0.40

N
um

be
r 

of
 S

am
pl

es
 N H

um
an-M

odel IoU

Figure A3: Human-model similarity (IoU) across inference
parameters for open-ended SIPS and the bottom-up proposal.

planning. Interestingly however, the more informed search
strategy, A*, led to slightly worse fits, suggesting that hu-
mans may not be explicitly modeling other’s detailed search
processes when performing inverse planning over large num-
bers of goals. Human similarity also improved when using
a tempered word prior with Tw = 4.0, whereas using the raw
corpus frequencies as the prior (Tw = 1.0) led to substantially
poorer fits. In other words, people’s intuitions for what words
are likely in a word game are substantially broader than ev-
eryday word usage statistics.

Inference algorithm sensitivity analysis. Figure A3
shows how human-model IoU varies with different inference
parameters for both open-ended SIPS and the proposal-only
baseline. Again, untempered word frequencies (Tw = 1) lead
to a poor fit, which cannot be overcome even with a highe
sample count N. Intermediate tempering (Tw = 4) leads to
the best fit, capturing the broader distribution of human word
guesses. The termination bias ε has a less pronounced effect,
with the best value (ε = 0.05) capturing the additional diffi-
culty of proposing long words. Open-ended SIPS dominates
the bottom-up proposal for almost all parameter settings.

Bottom-Up Proposals
For bottom-up sampling, we experimented with proposals
Q(g|st ,at) of varying degrees of sophistication. In all of these
proposals, we sample complete words g by conditioning an
n-gram language model on some partial word that can be
stacked from the blocks in the current state st . However, this
still leaves undetermined which partial words, or subgoals, to
consider. We implemented the following strategies for select-
ing partial words to complete:

ANY-TOWER samples a random block tower τ in state st ,
then tries to complete it into a full word. The probability of
sampling a tower is proportional to how word-like the tower
is — i.e., how probable it is according the n-gram model.

Open-Ended SIPS Human-Model Similarity (IoU)
Proposal Strategy Q N = 2 N = 5 N = 10 N = 20 N = 50

ANY-TOWER 0.294 0.310 0.297 0.314 0.319
LAST-TOWER 0.348 0.340 0.317 0.339 0.344
NEXT-TOWER 0.302 0.304 0.306 0.309 0.329
LAST-AND-NEXT 0.354 0.336 0.342 0.341 0.341

Goal Accuracy

ANY-TOWER 0.115 0.162 0.156 0.159 0.160
LAST-TOWER 0.163 0.171 0.184 0.174 0.176
NEXT-TOWER 0.118 0.157 0.160 0.170 0.165
LAST-AND-NEXT 0.153 0.163 0.183 0.177 0.176

(a) Open-Ended SIPS

Bottom-Up Human-Model Similarity (IoU)
Proposal Strategy Q N = 2 N = 5 N = 10 N = 20 N = 50

ANY-TOWER 0.211 0.218 0.217 0.224 0.228
LAST-TOWER 0.300 0.301 0.301 0.306 0.310
NEXT-TOWER 0.226 0.223 0.221 0.231 0.237
LAST-AND-NEXT 0.303 0.307 0.309 0.315 0.318

Goal Accuracy

ANY-TOWER 0.067 0.071 0.072 0.069 0.070
LAST-TOWER 0.141 0.134 0.139 0.138 0.134
NEXT-TOWER 0.073 0.074 0.068 0.072 0.074
LAST-AND-NEXT 0.132 0.140 0.135 0.141 0.137

(b) Proposal-Only Baseline

Table A1: Effect of bottom-up proposal strategy Q on
human-model similarity (IoU) and goal accuracy.

LAST-TOWER tries to sample a word that completes the
tower most recently stacked by action at . However, if this
tower τ is not sufficiently word-like (or if at is not a stacking
action), the proposal falls back to ANY-TOWER instead. This
is implemented by comparing the probability plast of the most
recently stacked tower under the n-gram against the probabil-
ity prand of an equally tall tower of random blocks, then de-
ciding to complete the last tower with probability plast

plast+prand
.

NEXT-TOWER focuses on cases where the agent is un-
stacking a tower of blocks in order to reach a block in that
tower. The proposal considers all ways of using a block in the
most recently unstacked tower to complete some other block
tower. One of these candidate towers τ is selected with prob-
ability proportional to how word-like it is, and then a comple-
tion is sampled from to the n-gram model. If no candidate is
word-like enough compared to the probability of selecting a
random block, then the proposal defaults to ANY-TOWER.

LAST-AND-NEXT is the most sophisticated of our propos-
als, which we describe and use in the main text. It is equiv-
alent to LAST-TOWER, except it defaults to NEXT-TOWER if
the last action is not a stacking action, or if the last stacked
tower is not sufficiently word-like.

Table A1 shows how these different proposal strategies
compare in terms of both human similarity and goal infer-
ence accuracy. As expected, the LAST-AND-NEXT proposal
best matches human inferences whether it is incorporated
into open-ended SIPS (Table A1(a)) or used on its own (Ta-
ble A1(b)), while achieving (close to) the highest accuracy.
The LAST-TOWER also performs well in this regard, albeit
with slightly lower human similarity. In contrast, both ANY-
TOWER and LAST-TOWER fare poorly. Open-ended SIPS is
able to make up for their weakness to some degree, showing
the value of inverse planning even with a weak proposal.
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(a) Pearson’s correlation r between human inferences and model inferences across conditions.
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Figure A4: Similarity of average human and model goal inferences measured in terms of (a) Pearson’s correlation coefficient,
(b) distribution overlap (∑g min[P(g),Q(g)] for distributions P and Q), and (c) total variation distance ( 1

2 ∑g |P(g),Q(g)|). As
in Figure 2, error bars denote 95% CIs, calculated from 1000 bootstrap samples of the distribution of human responses.

Handling auxiliary randomness. Note that all of our
bottom-up proposals make use of auxiliary randomness (Lew
et al., 2022) when sampling a tower τ to complete into a full
word g. This means that even though we can sample from
g ∼ Q(g|st ,at), we cannot exactly evaluate the probability
Q(g|st ,at) used in the importance weight. Instead, we can
only evaluate Q(g|st ,at ,τ) using the n-gram model, which
is conditional on the choice of tower τ ∼ Q(τ). In the con-
text of an SMC algorithm like open-ended SIPS, however,
we can use an unbiased density sampler of Q(g|st ,at) (Lew,
Ghavamizadeh, et al., 2023; Lew et al., 2022), which returns
both g and a weight w such that EQ[w−1|g] = Q(g|st ,at)

−1.
This weight w can then be used as the denominator when
computing importance weights in L6 of Algorithm 1. Using
w = Q(g|st ,at ,τ) satisfies this property.

Additional Similarity Metrics

In Figure A4, we report additional measures of similarity be-
tween human goal inferences and model outputs: (a) Pear-
son’s correlation r, (b) the overlap coefficient between distri-
butions (a generalized version of recall), and (c) total varia-
tion distance (which captures the maximum difference in the
probability of any event under two distributions). Regardless
of the metric, open-ended SIPS is more similar to humans
than exact inference or the bottom-up proposal. This is most
pronounced in the Irrational Alternatives condition.

Additional Step-by-Step Comparisons

In Figure A5, we show step-by-step comparisons between hu-
man and model inferences for the two experimental condi-
tions not covered in the main text.

In the Bottom-Up Friendly scenario, limited inverse plan-
ning is necessary, and so the bottom-up proposal is as good
an explanation for human goal inference as open-ended SIPS
for all steps except t = 8. At this step, the bottom-up proposal
generates words that end in p by following the LAST-TOWER
proposal strategy. This fails to take into account the previ-
ous actions of stacking block n onto block s, highlighting the
importance of inverse planning in even simple scenarios.

In the Uncommon Words scenario, we chose the uncom-
mon word chump to be the goal, and designed actions to
make more common distractors like jump and hump seem
likely. As expected, most humans failed to think of chump
as a possibility until the very last step (t = 12). Open-ended
SIPS and the proposal only baseline with N = 2 particles re-
flected this tendency, demonstrating how inferring rare events
is difficult with a small number of samples. In contrast, the
exact inference baseline enumerates all possible words at ev-
ery step, and hence assigns chump a significant probability
at t = 10. This is the case even though chump is less likely
under the goal prior P(g): an event being rare under the pro-
posal Q leads to qualitatively different behavior than exact
inference over events with low prior probabilities.
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Figure A5: Step-by-step inference results on scenarios from the Bottom-Up Friendly and Uncommon Words conditions. In
(a) there are few qualitative differences between the inference methods, apart from t = 8, where the proposal only baseline
generates words that end in p instead of taking into account the fact that n was previously stacked on s. In (b), humans, open-
ended SIPS, and the bottom-up proposal largely fail to guess the uncommon word chump until the very last timestep (t = 12),
in contrast to the fully enumerative baseline, which assigns a non-trival probability to chump by t = 10.
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Figure A6: Accuracy vs. runtime for (a) exact inference and
(b) open-ended SIPS across planner configurations.

Accuracy and Runtime
While our analysis in this paper focused on open-ended SIPS
as a rational process model of human goal inference, our
algorithm can also be used as a practical tool for building
AI systems that better infer people’s goals in order to assist
them (Zhi-Xuan et al., 2024). To that end, we compare the
accuracy-runtime tradeoffs of both open-ended SIPS and the
baseline methods. All experiments were conducted on a lap-
top with an i7-1370P 1.90 GHz CPU and 64 GB of RAM.

Effect of planner configuration. In Figure A6, we show
how the accuracy of goal inference changes as a function of
the planner configuration used in the generative model. Ac-
curacy is plotted against algorithm runtime per observed ac-
tion. We find that accuracy generally increases with planning
budget, indicating the importance of spending enough com-
putation on calculating good Q̂πt estimates, which improves
the quality of the action likelihood P(at |g). The effect of the
search strategy is more subtle. Using A* search as the RTHS
search strategy can improve accuracy when ∆t = 1 (i.e. when
the policy is updated at every timestep). However, this leads
to an increased runtime compared to BFS for any given plan-
ning budget B, with A* being 2-5 times slower than BFS for
low planning budgets. Still, using A* with ∆t = 1 achieves
higher accuracy than BFS ever does, indicating its value when
accuracy is paramount. Unlike the planning budget, increas-
ing the particle count N does not appear to substantially im-
prove the average accuracy of open-ended SIPS, with changes
in planner configuration dominating any accuracy improve-
ment from additional particles.

Method Search
Strategy

Particle
Count N

Runtime /
Act. (s)

Accuracy
P(gtrue)

Accuracy
Std. Dev.

Exact BFS — 7.31 0.153 0.000
Inference A* — 37.95 0.186 0.000

Open-Ended BFS 2 0.08 0.177 0.218
SIPS 5 0.16 0.171 0.140

10 0.26 0.178 0.095
20 0.44 0.173 0.069
50 0.95 0.178 0.049

Open-Ended A* 2 0.32 0.186 0.225
SIPS 5 0.67 0.197 0.146

10 1.18 0.191 0.108
20 2.14 0.204 0.080
50 4.73 0.203 0.055

Proposal — 2 0.0004 0.145 0.171
Only 5 0.0006 0.147 0.104

10 0.0008 0.139 0.073
20 0.001 0.147 0.052
50 0.003 0.146 0.035

Table A2: Accuracy and runtime across inference methods,
RTHS search strategies, and particle counts. Bold entries de-
note the best performance within each method. Italicized en-
tries denote best performance across methods.

Overall comparison. In Table A2, we show accuracy
and runtime measures across all inference methods and par-
ticle counts. For the inverse planning methods, we fixed the
planning budget to B = 100, but compare both the accuracy-
maximizing planner configuration (σ = A*,∆t = 1) and the
runtime-minimizing configuration (σ = BFS,∆t = 2). While
exact inference has zero variance, the cost of tracking all
goal hypotheses leads to an unacceptably high runtime for
many applications. The bottom-up proposal is on the opposite
end of the spectrum, achieving millisecond or less runtimes
but with a subpar accuracy that does not increase with par-
ticle count. In contrast, open-ended SIPS combines the best
of both worlds, achieving the highest goal accuracies while
maintaining real-time speed. Changing the particle count N
trades off variance in inference results vs. runtime. By using
N = 20, the variance in the probability estimate of the true
goal can also be limited to less than 10% while still taking less
than half a second process each new observation. These re-
sults demonstrate the promise of open-ended SIPS as a prac-
tical algorithm for real-time open-ended goal inference.


