
RESEARCH STATEMENT
Xuan (Tan Zhi Xuan)

How can we build AI systems that reliably assist humans with their goals, despite uncertainty about what
those goals are? More broadly, how can we design machines to exhibit cooperative intelligence: machines that
can align themselves with the objectives of individual users, coordinate with other agents to achieve shared
goals, and comply with the norms and principles of society-at-large?

My research answers these questions through the framework of Bayesian inverse planning: By modeling
humans as approximately rational agents that take actions or communicate instructions to achieve their goals,
AI systems can infer distributions over people’s goals from what they say or do, then act to help even under
uncertainty. Drawing upon the tools of probabilistic programming and model-based planning, along with the insights
of computational cognitive science, my research has shown (1) how Bayesian inverse planning algorithms can be
engineered to run in (faster than) real-time while scaling to open-ended contexts with hundreds of possible
goals. I have also shown (2) how these algorithms can integrate large language models (LLMs) as modeling sub-
components, enabling them to infer and disambiguate human intentions from ambiguous natural language. The
(3) software platforms I have developed along the way have also allowed myself and my colleagues to study
cooperative intelligence beyond goal inference, paving the way towards machines that can model not just our
goals and plans, but also (4) our beliefs, values, and norms.

1 Real-Time Open-Ended Goal Inference via Bayesian Inverse Planning

People rapidly infer the goals of others by observing their actions over time. How can we design algorithms for
goal inference that match this speed, while ensuring accuracy and calibration? During my PhD at MIT, I devel-
oped an algorithm class called Sequential Inverse Plan Search (SIPS), which scales Bayesian inverse planning
to run in (faster than) real-time (Figure 1). SIPS can process 10–75 actions per second on a single CPU, while being
more accurate and 100–1000 times faster than inverse reinforcement learning (IRL) baselines [NeurIPS’20].

Figure 1: SIPS infers goals (gems) from actions (move-
ment ▶, picking up items ⃝) in real-time (13.3ms/step)
by modeling agents that interleave depth-bounded any-
time planning (blue search tree ▷⊙) with acting.

The key insight behind SIPS is that human planning can be
modeled using online or anytime planning algorithms, which only
plan ahead to a limited extent before committing to an action.
This means that SIPS can tractably compute the likelihood of an
agent’s action given a goal, and hence rapidly update a posterior
distribution over a set of goals. In contrast, classical plan recogni-
tion algorithms have to solve NP-hard planning problems when
modeling what an agent will do, and standard IRL algorithms re-
quire costly RL inner loops or considerable offline training. SIPS
also naturally accounts for boundedly-rational human planning:
People might make mistakes and even fail to achieve their goals
due to not planning ahead enough. By modeling this, SIPS can
robustly infer others’ goals even when their plans lead to failure,
matching the flexible inferences of human observers in ways that
standard goal inference algorithms cannot [CogSci’21].

SIPS is not only fast, but also highly configurable—a benefit of its implementation in Gen,1 a probabilistic
programming framework that I co-maintain. Leveraging this flexibility, I have extended SIPS to perform open-
ended goal inference in compositional goal spaces where there may be hundreds or more possible goals. Instead of
exhaustively considering each goal, open-ended SIPS [CogSci’24a] makes use of learned bottom-up proposals that
rapidly propose plausible goal hypotheses given the subgoals achieved by the agent so far. These bottom-up
guesses are then filtered by importance reweighting and resampling, ensuring that the filtered hypotheses are
good explanations of the observed actions. As a result, open-ended SIPS achieves runtimes as low as 0.08s per
action, and matches the accuracy of exact Bayesian inference over as many as 800 goals. This addresses a key bottleneck
in Bayesian approaches to cooperative AI, enabling us to scale uncertainty-aware AI assistance.
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2 AI Assistants that Reliably Infer Intentions from Ambiguous Instructions

Figure 2: CLIPS performs multimodal goal inference
from actions (a) and ambiguous instructions (u) by using
LLMs as utterance likelihoods in a Bayesian agent model.

When working on shared tasks, people do not just signal their
intentions through actions—they also communicate them in
natural language. To handle such communication, I devel-
oped a language-based extension of SIPS called Cooperative
Language-Guided Inverse Plan Search (CLIPS) [AAMAS’24a],
which infers a human’s goals and intentions from both their
actions and instructions, then acts to assist that human. As a
Bayesian algorithm, CLIPS is able to handle under-specified in-
structions, using observed actions as context to interpret am-
biguous language, while providing safe assistance in cases of
uncertainty. For example, a person might place three plates on
the dining table, then say “Can you get the forks and knives?”
Like humans, a CLIPS assistant can infer that the person’s goal is to set the table for three, and hence plan to get
three forks and three knives (Figure 2). If the person does not get any plates before making their request, then a
CLIPS assistant will be appropriately uncertain about their goal, allowing it to ask clarifying questions.

To achieve these inferences, CLIPS uses LLMs as sub-components of a probabilistic program, exploiting them
as utterance likelihoods P (u|π) over natural language inputs u given a symbolic plan π. Inverting this model, we
can infer the human’s intended plan π from an utterance u. CLIPS thus leverages the competence of LLMs at
parsing a rich variety of natural language,2 while avoiding their unreliability at cognitive tasks like planning3, 4

and theory of mind.5, 6 This allows CLIPS to be 2.5 times as accurate at goal inference than the multimodal language
model GPT-4V, despite CLIPS using a much smaller LLM (6.7B). The inferences and assistive plans produced by
CLIPS were also highly similar to those of human raters (Pearson’s r=0.93, vs. r=0.11 for GPT-4V). CLIPS thus
paves the way towards language-based AI assistants that reliably infer and act according to our intentions.

3 Platform Engineering for Model-Based Planning and Programmable Inference

Modular software infrastructure is required to engineer systems like SIPS and CLIPS. Such infrastructure enables
researchers to rapidly implement, debug, and iterate upon the models and algorithms involved. To address
this need, I developed software platforms for model-based planning and programmable Bayesian inference,
designing them for composability through well-defined APIs (Figure 3). This allows planning and inference
algorithms to be combined with each other (as in SIPS), or with other AI technologies.

Figure 3: PDDL.jl: Efficient interfaces for AI planning.
GenParticleFilters.jl: Modular building blocks for SMC.

Efficient and domain-general planning algorithms are a key
component of SIPS. To implement such algorithms, I created the
PDDL.jl interpreter and compiler [SM Thesis] for planning tasks
specified in the Planning Domain Definition Language (PDDL),7

along with an ecosystem of planning algorithms (SymbolicPlan-
ners.jl) and other tools. Unlike earlier planning software, PDDL.jl
is designed around a core interface of operations used in model-
based planning (e.g. querying whether a logical formula is true
at a world state), and provides multiple implementations of that in-
terface, including an interpreter, a compiler, and an abstract interpreter. This allows users to trade-off between
debugging (via the interpreter) and speed (via the compiler), or to compute planning heuristics via abstract
interpretation.8 PDDL.jl also supports extensible semantics, allowing users to specify planning tasks which may
involve numeric or array variables. Together, these features mean that PDDL.jl is both faster and more domain-
general than most other automated planning systems, achieving run-times up to 36 times as fast as the Pyperplan
and ENHSP planners, and within an order of magnitude of the state-of-the-art FastDownward planner, while sup-
porting a wider range of planning domains (classical, numeric, etc.) than all of these systems combined. The ease
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of integration afforded by PDDL.jl has also led to growing adoption by the community (78 GitHub stars), and
enabled innovative combinations of machine learning with planning heuristics by other researchers.9

Another key component of SIPS is its Sequential Monte Carlo (SMC) inference algorithm, which can be con-
figured with custom resampling and rejuvenation strategies to effectively manage hypothesis diversity (as ex-
ploited by open-ended SIPS). To support this level of programmability, I created GenParticleFilters.jl, a particle
filtering and SMC inference library for the Gen.jl probabilistic programming system. Like Gen itself, GenPar-
ticleFilters.jl is designed to support programmable inference,.1, 10 As such, it provides a wide variety of building
blocks that developers can readily compose into full SMC samplers, including subroutines for particle initial-
ization, updating, resampling, rejuvenation, and resizing. This makes GenParticleFilters.jl the most feature-
complete probabilistic programming library for SMC, as exemplified by its support for the SMCP3, an algorithm
class that I co-developed which subsumes most existing frameworks for SMC [AISTATS’23]. By automating
the low-level math required to ensure the soundness of SMC, GenParticleFilters.jl enables rapid prototyping of
SMC algorithms that are tailored to specific model classes, enabling applications including SIPS, active learning
of Gaussian Process kernel structure11 and online synthesis of probabilistic programs.12

4 Beyond Goal Inference: Towards AI that Learns Our Beliefs, Values, and Norms

Human social cognition encompasses more than just goal inference; we are also adept at inferring others’ beliefs,
and learning the values and norms of the communities we are part of. With my mentees and collaborators, I have
recently begun to show how the toolkits of probabilistic programming and model-based planning can be applied
to build AI systems with these capabilities.

In the case of beliefs, we have extended SIPS to perform belief-space inverse planning, jointly inferring the goals
and beliefs of an agent without exhaustive POMDP solving. By combining this algorithm with the formal seman-
tics afforded by PDDL-based planning, and the language-to-code translation abilities of LLMs, we developed the
a language-augmented Bayesian theory-of-mind model that is capable of interpreting and evaluating natural
language statements about others’ beliefs [CogSci’24b, TACL’TBD]. Our work breaks new ground by provid-
ing a principled semantics of belief sentences that is grounded in rational inferences about other agents’ minds.
Practically, our model demonstrates how we can build AI that reliably tracks our beliefs and how they may come
apart from reality. This competency is crucial for algorithms that provide assistance or correction when we are
ignorant or misinformed (e.g. intelligent tutors), and is currently lacking in even the largest LLMs.6

Figure 4: In Norm-Augmented Markov Games, agents
infer cooperative norms from societal behavior.

As for norms and values, a long-held interest of mine has
been to reverse engineer the cognitive capacities involved in hu-
man moral learning and reasoning. To that end, my early work
involved building robotic systems that incrementally learn rule-
based ownership norms,13 and studying Bayesian models of how
humans disambiguate social norms from individual desires.14

With my current expertise in planning and inverse planning, I
have recently revisited these topics. Together with a Masters stu-
dent that I supervised, I developed a new Bayesian framework
for social norm learning in the context of multi-agent RL called norm-augmented Markov games [AAMAS’24b]
(Figure 4). Implementations of this framework allow agents to passively learn complex social norms from 6–7
orders of magnitude less experience than model-free RL approaches, and to emergently coordinate upon and stabilize
shared conventions. I have also contributed to research on how people reason about social and moral norms,
co-developing probabilistic models of universalization reasoning15 and virtual bargaining16 that explain when peo-
ple decide it is permissible to break a certain rule. Finally, I led a position paper, Beyond Preferences in AI
Alignment [PhilStudies’24], arguing for the importance of modeling human normative and evaluative reason-
ing when building AI systems that are aligned with human values, in contrast to dominant preference-oriented
approaches. This paper has since garnered substantial interest, resulting in guest lectures and invited talks at
Stanford University and the Simons Institute for the Theory of Computing.
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5 Research Agenda: Scaling Cooperative Intelligence to Assistants, Teams, and Societies

Over the course of my PhD, I have laid the algorithmic and conceptual foundations for the design of cooper-
atively intelligent systems based on efficient Bayesian reasoning about other agents’ minds. In the next phase
of my career, I aim to build upon these foundations, scaling model-based cooperative intelligence towards (i)
human-aligned AI assistants that operate safely and reliably in embodied and digital contexts by understanding
the goals, beliefs, and intentions of their human principals, (ii) collaborative agents that automatically coordinate
with humans and other agents by inferring shared goals and norms, (iii) algorithmically-enabled mechanisms
that promote human cooperation, negotiation, and deliberation despite differences in our beliefs and values.

Human-Aligned AI Assistants for Physical and Virtual Worlds. AI assistants that take actions over long hori-
zons in response to human instructions are growing rapidly in popularity, bolstered by the success of LLMs in
processing open-ended natural language. However, due to the limitations of LLMs, such assistants remain too
unreliable for widespread adoption, confabulating responses and taking unsafe actions without user approval.
Algorithms like SIPS and CLIPS demonstrate that another path towards safe and reliable AI assistants is possi-
ble: By maintaining a coherent model of the physical or virtual world, as well as a model of the human user and
their goals, CLIPS-style assistants can ground the meaning of instructions in a well-defined semantics, construct plans
with correctness guarantees, and remain appropriately uncertain about user goals.

Going forward, I plan to scale CLIPS to much richer spaces of goals, instructions, and environments. To do so, I aim
to leverage recent advances in probabilistic programming by my collaborators: Using SMC to enforce syntactic
and semantic constraints on LLM outputs,17, 18 CLIPS will be able to parse natural language into complex tem-
poral specifications. Using Bayesian 3D scene perception,19, 20 CLIPS will have access to environment models for
planning and inverse planning. By integrating these technologies into a single stack, I believe it will be possible
to create digital agents and embodied robot assistants that are reliably human-aligned.

Team-Forming and Norm-Abiding Agents for Human-AI Societies. As robots and AI agents become increas-
ingly embedded in our societies, assisting individual humans will be just one of the capacities they require for
cooperation and coordination. Building upon my work on team-based goal inference,21 and Bayesian learning
of social norms [AAMAS’24b], I plan to expand the science and engineering of agents that automatically co-
ordinate with each other. Such coordination requires inferring and jointly pursuing shared goals (in cooperative
settings), and complying with norms and conventions that promote everyone’s long-run interests (in mixed-motive set-
tings). These capabilities will be crucial to enable human-robot teams that collaborate fluidly in construction or
rescue operations, autonomous vehicles that adapt or improve upon local driving conventions, and web-based
AI agents that avoid over-taxing Internet infrastructure even while they pursue their users’ goals.

Augmenting Human Cooperation by Enhancing Deliberation and Argumentation. People engage in delibera-
tion, negotiation, and argumentation with each other in order to achieve shared or competing interests. Drawing
upon our beliefs and values, we articulate reasons, assess empirical claims, and persuade others of the desirabil-
ity of certain outcomes. Yet such interactions can break down, perhaps due to lack of factual agreement, failed
understanding of each others’ goals, or the inability to come up with mutually agreeable solutions. Leveraging
my work on computational models of normative reasoning15, 16 and contractualist AI alignment [PhilStudies’24],
I aim to develop new models of human deliberation and argumentation that are grounded in rational models of human
cognition22 and computational frameworks for negotiation and argumentation.23 Informed by these scientific
insights, I hope to design algorithms that aid human deliberation by combining formal models of negotiation and
bargaining24 with LLMs for open-ended text processing. Such algorithms would surface key areas of consen-
sus and divergence, suggest ways to move beyond argumentative impasses, and propose solutions that fairly
benefit all parties involved. If successful, this research program could transform how our societies get along,
improving the quality and efficiency of our deliberation in contexts all the way from scientific peer review and
contract negotiation to parliamentary and legislative debates.
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