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Abstract— Humans and other agents navigate their environ-
ments by acting efficiently to achieve their goals. In order
to infer agents’ goals from their actions, it is thus necessary
to model how agents achieve their goals efficiently. Here, we
show how online goal inference and trajectory prediction in
continuous domains can be performed via Bayesian inverse
motion planning: By modeling an agent as an approximately
Boltzmann-rational motion planner that produces low-cost
trajectories while avoiding obstacles, and placing a prior over
goals, we can infer the agent’s goal and future trajectory from
partial trajectory observations. We compute these inferences
online using a sequential Monte Carlo algorithm, which ac-
counts for the multimodal distribution of trajectories due to
obstacles, and exhibits better calibration at early timesteps than
a Laplace approximation and a greedy baseline.

I. INTRODUCTION

For autonomous agents to collaborate fluidly with humans
in physical spaces, they need to rapidly infer human goals
from low-level observations of motion. This goal inference
problem has been tackled through a variety of approaches,
including deep learning [1], inverse reinforcement learning
[2], [3], [4], plan recognition [5], [6], [7], and Bayesian
inverse planning [8], [9]. Most of these approaches build
upon the insight that humans can be modeled as goal-directed
planners who act efficiently to achieve their goals. Under
this assumption, a goal is more likely if observed behavior
corresponds with an efficient plan to achieve that goal.

Here we demonstrate how this insight can be applied to
continuous domains. Unlike most goal inference approaches,
which are typically restricted to discretized [10] or sym-
bolic domains [6], we model agents as goal-directed motion
planners, allowing us to handle continuous environments
and observations. Building upon work in legible motion
planning [11] and probabilistic programming [12], [13],
we incorporate motion planning algorithms into a Bayesian
agent model, allowing us to condition on motion trajectories
to infer the agent’s underlying goal. In contrast to approaches
that use RRT planners [7], [12], [13], we model agents as
Boltzmann-rational motion planners, directly capturing the
relationship that lower-cost plans are more probable, while
enabling the use of gradient-based trajectory optimization to
generate plans [14], [15], [16]. For inference, we develop
an asymptotically-accurate sequential Monte Carlo (SMC)
algorithm, which approximates the full posterior distribution
over goals and future trajectories in an online manner.

The authors are with the Department of Brain and Cognitive Sci-
ences (BCS) and Department of Electrical Engineering and Computer
Science (EECS) of the Massachusetts Institute of Technology. {xuan,
jkondic, sslocum3, jbt, vkm, dhm}@mit.edu

Fig. 1: Online goal inference (below, dashed) and trajectory
prediction (above, red) from noisy observations (above, black
markers) in a continuous obstacle-laden environment, via
Bayesian inference over a motion planning agent.

II. MODELING AGENTS AS
GOAL-DIRECTED MOTION PLANNERS

We define a Bayesian model of agents as goal-directed
motion planners, where motion plans are generated in accor-
dance with the principle of rational action [17], [8]. Specifi-
cally, we place a uniform prior over possible goal regions
g ∈ G, and over trajectory endpoints in each goal region
xT ∈ g. We then assume that agent trajectories (i.e. motion
plans) x1:T are drawn from a distribution P(x1:T |x1,xT ) over
low-cost, obstacle-avoiding trajectories with (known) start
and (sampled) end points (x1,xT ). Finally, for each timestep
t ∈ [1,T ], we model observations ot as normally distributed
around the agent’s location at that timestep ξt with noise σ :

Goal Prior: g∼ Uniform(G) (1)
Endpoint Prior: xT ∼ Uniform(g) (2)
Motion Planning: x1:T ∼ P(x1:T |x1,xT ) (3)
Observation Noise: ot ∼ Normal(xt ,σ) (4)

To model approximately rational, low-cost trajectories, it is
common to use a Boltzmann distribution with a cost function
C(x1:T ) and rationality parameter α [10], [11]

π(x1:T |x1,xT ) =
1

Z(x1,xT )
exp[−αC(x1:T )] (5)

C(x1:T ) =Csmooth(x1:T )+λCobs(x1:T ) (6)

where Z(·, ·) is an endpoint-dependent normalizing constant,
and the cost function includes terms for smoothness and
obstacle avoidance [14], [15].



However, evaluating the probability of a trajectory x1:T
under the Boltzmann distribution π (a.k.a. the maximum
entropy distribution [3]) requires the normalizing constant
Z(x1,xT ), which is intractable to compute in continuous
domains. We instead assume that agents sample motion plans
x1:T according to a Monte Carlo approximation π̂ of the
true Boltzmann distribution π , drawing upon the insight
that planning can formulated as inference [18], [19], [20].
In particular, we use a SMC approximation of π , which
proposes initial trajectories then iteratively adapts them to
the target distribution π via a series of Langevin Monte
Carlo (LMC) [21] and Newtonian Monte Carlo (NMC) [22]
kernels. These kernels are stochastic analogues to first and
second-order trajectory optimization steps [14], [15], so our
SMC approximation can be viewed as an algorithm for
stochastic trajectory optimization. Our SMC approximation
π̂ also produces unbiased estimates Ẑ of the normalizing
constant Z. This allows us to compute unbiased estimates
of the normalized probability π̂(x1:T |x1,xT ) of a trajectory,
which is sufficient for sound Bayesian inference [12], [23].

III. ONLINE GOAL INFERENCE VIA
BAYESIAN INVERSE MOTION PLANNING

Having defined our agent model, our aim is to infer the
agent’s goal g and future trajectory xτ+1:T given observations
of its trajectory so far o1:τ and a known initial location x1:

P(g,xτ+1:T |x1,o1:τ) ∝

P(g)P(xT |g)P(x1:T |x1,xT )∏
τ
t=1P(ot |xt) (7)

We sequentially approximate this posterior distribution using
another SMC algorithm called Sequential Monte Carlo for
Inverse Motion Planning (SMC-IMP). Like other particle
filtering algorithms, SMC-IMP works by first sampling a
set of N hypotheses from the model (g,x1:T )

1:N and as-
signing them equal weights w1:N . At each timestep t, a
new observation ot arrives, and the hypotheses are adjusted
to better to explain ot , then reweighted according to how
well they explain ot . After reweighting, the hypotheses are
further adjusted by LMC and NMC rejuvenation kernels [24].
The weighted collection of hypotheses ((g,x1:T ),w)1:N at
timestep t represents a discrete approximation to the posterior
over goals and full trajectories P(g,x1:T |x1,o1:t). Dropping
the first t steps of each hypothesized trajectory gives an
approximation to our desired posterior P(g,xt+1:T |x1,o1:t).
Pseudocode for SMC-IMP is shown in Algorithm 1.

Algorithm 1 SMC for Inverse Motion Planning (SMC-IMP)
procedure SMC-IMP(x1, o1:τ , N)

(g,x1:T )
i ∼ P(g,x1:T |x1) for i ∈ [1,N] ▷ Sample N hypotheses

wi← P(o1|x1) for i ∈ [1,N] ▷ Initialize weights
for t ∈ [2,τ], i ∈ [1,N] do

x̃i
t ∼ K(xt ;ot) ▷ Propose new x̃t close to ot

x̃i
1:T ← (xi

1:t−1, x̃t ,xi
t+1:T ) ▷ Replace xt with new x̃t

wi← wi K(x̃i
t ;ot )

L(xi
t ;x̃i

1:T )

P(gi ,x̃i
1:T |x1)

P(gi ,xi
1:T |x1)

P(ot |x̃i
t) ▷ Reweight hypotheses

xi
1:T ∼ LMC(·,NMC(·; x̃i

1:T )) ▷ Rejuvenate via NMC & LMC
end for
return ((g,x1:T ),w)1:N ▷ Return weighted hypotheses

end procedure

P(gtrue|o1:t ) Brier Score
Method t = T/5 T/4 T/3 T/2 t = T/5 T/4 T/3 T/2

Greedy 0.42 0.45 0.51 0.62 0.67 0.65 0.59 0.45
Laplace 0.60 0.61 0.73 0.85 0.68 0.66 0.45 0.25

SMC-IMP 0.53 0.61 0.70 0.79 0.48 0.43 0.40 0.33

TABLE I: Probability assigned to the true goal P(gtrue|o1:t)
and Brier scores at various timesteps t (as a fraction of
trajectory length T ), averaged across trajectories.

IV. EXPERIMENTS & DISCUSSION

We evaluated the goal inference capabilities of our method
on 45 agent trajectories across 5 different 2D scenes, each
of which contained 3 possible goal regions, and varying
obstacle setups (e.g. smaller scattered obstacles, a maze,
a tunnel). These scenes were designed to test our model’s
ability to generate diverse trajectory hypotheses, as well
as our inference algorithm’s ability to handle multimodal
posterior distributions over trajectories to a goal. In each
scene, we generated a set of three trajectories per goal (of
length T = 21), corresponding to different paths through the
obstacles whenever more than one path was plausible.

We configured our SMC algorithm to sample N = 600
particles, and use a rationality parameter of α = 20. We com-
pared against two baselines: A greedy distance-based heuris-
tic, which assigns higher probability to goals that are closer
to the most recent observation P(g|o1:t) ∝ exp(min-dist(ot));
and a Laplace approximation to the posterior over goals,
which models the distribution over trajectories to each goal
as a multivariate Gaussian around the lowest-cost trajectory,
and ignores observation noise [11]. In contrast to both
of these baselines, SMC-IMP accounts for the multimodal
distribution over trajectories due to the presence of obstacles.

In Table I, we report the posterior probability each method
assigns to the true goal at 1

5 , 1
4 , 1

3 , and 1
2 the length of the

trajectory (rounded to the nearest timestep), averaged across
all trajectories in the dataset. We also report the Brier score
at the same timesteps, which reflects how well-calibrated the
predictions are (lower is better) [25]. As expected, SMC-IMP
out-performs the greedy baseline. Compared to the Laplace
approximation, SMC-IMP tends to assign lower probability
to the true goal, but with a better Brier score at earlier
timesteps. This reflects that SMC-IMP is better at maintain-
ing uncertainty when the data is ambiguous, whereas the
Laplace approximation is over-confident at earlier timesteps,
assigning high probabilities to the wrong goals.

While our method performs reasonably on this dataset,
many challenges remain. In the future, we aim to improve
the runtime and accuracy of the algorithm through better
Monte Carlo approximations of the Boltzmann distribution,
which may involve the use of smarter proposal distributions
or specialized solvers to generate candidate motion plans.
We also aim to scale this approach to higher dimensions,
and to explore the possibility of integrating SMC-IMP with
existing algorithms for inverse task-level planning [9], with
the eventual hope of performing goal inference and trajectory
prediction over task-and-motion plans.



Potential applications for our method include human
motion-prediction for collision avoidance and human-robot
collaboration, especially for manipulation problems. Here,
accurate inference of human goals and future trajectories
remains a major obstacle towards safe and high autonomy
collaborative systems [26]. In contrast to existing deep
learning approaches to motion prediction [27], [28], [29],
our method would not require hours of data collection and
retraining for each new problem.

Concretely, adapting our method to a human-robot collab-
oration problem would involve scaling to 3D domains and
estimating the human’s state in such a way that a cost func-
tion and trajectory optimization could be applied (e.g. with
pose estimation). We are optimistic about the potential of our
method to scale to difficult 3D motion planning problems
since our trajectory sampling algorithm can be viewed as
a probabilistic modification to successful and widely-used
SQP-based motion planners [16]. The inferred trajectories
produced by our algorithm could then be used as inputs to the
robot’s cost function and problem definition, which could be
solved using standard robotic planning methods, especially
probabilistic algorithms like belief-space planning [30], [31].
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