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Abstract
Domain-general model-based planners often de-
rive their generality by constructing search heuris-
tics through the relaxation or abstraction of sym-
bolic world models. We illustrate how abstract
interpretation can serve as a unifying framework
for these abstraction-based heuristics, extending
the reach of heuristic search to richer world mod-
els that make use of more complex datatypes and
functions (e.g. sets, geometry), and even models
with uncertainty and probabilistic effects.

1. Introduction
Since the advent of the Stanford Research Institute Problem
Solver (STRIPS) (Fikes & Nilsson, 1971), it has been under-
stood that planning and sequential decision making can be
viewed as a form of theorem proving, where sequences of ac-
tions are derived via heuristic search given a symbolic world
model and goal. While similar formal approaches have sub-
sequently been highly successful in model checking (Clarke,
1997), program analysis (Nielson et al., 2004), and con-
straint satisfaction (Barrett & Tinelli, 2018), they have come
to play less of a role in automated planning and decision
making, in light of successful learning-based approaches.
(Mnih et al., 2015; Silver et al., 2017). This is in part due
to the difficulty of specifying accurate symbolic models
of the world, given the presence of uncertainty and lim-
ited expressiveness, e.g., to models with only propositional
variables (Jiménez et al., 2012). Nonetheless, symbolic
methods remain widely used in planning and robotics, often
in conjunction with machine learning or motion planning
(Leonetti et al., 2016; Garrett et al., 2021).

Here, we show one powerful way of making these sym-
bolic planning methods more general: Using abstract in-
terpretation (Cousot & Cousot, 1977) to construct general-
ized heuristics for search. Domain-general planners often
construct search heuristics by planning in a relaxed or ab-
stracted model: the cost of a solution in a relaxed model
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can be used as an (optimistic) estimate of the true cost, pro-
viding heuristic guidance in search algorithms. Some of the
abstractions used by these heuristics are also used in model
checking (Seipp & Helmert, 2018) or numeric invariant
analysis (Scala et al., 2016). However, they have typically
been limited to propositional variables, with a few numeric
extensions. Inspired by work on semantic modularity for
symbolic planners (Gregory et al., 2012), we illustrate how
abstract interpretation can serve as a unifying framework for
these abstraction-based heuristics. This leads to natural ex-
tensions of heuristic search to richer world models defined
using more complex datatypes (e.g. sets) and functions
(e.g. geometric operations), or even models with uncertainty
and probabilistic effects. These heuristics can also be inte-
grated with learning, allowing agents to jumpstart planning
in novel world models via abstraction-derived information
that is later refined by experience. This suggests that ab-
stract interpretation can play a key role in building universal
reasoning systems.

2. Planning in Symbolic World Models
Symbolic world models, also called planning domains, de-
scribe the transition dynamics of an environment in sym-
bolic terms. A planning domain constitutes part of a plan-
ning problem, which also specifies the initial state and goal.
While domains and problems are usually specified in a first-
order language such as PDDL (McDermott et al., 1998), we
adopt a simplified formalism for ease of exposition. Here, a
planning problem is a tuple (F, V,A, I,G), where:

• F is a set of functions;
• V is a set of (typed) variables which may have Boolean,

numeric, or other datatypes;
• A is a set of actions a ∈ A, where:

– pre(a) is a precondition for a, comprising
Boolean functions from F over variables in V ;

– eff(a) is the effect of a, a set of non-conflicting
assignments to variables in v ∈ V

• I is the initial state, a set of assignments to each v ∈ V ;
• G is the goal, a logical formula of Boolean functions

from F over variables in V
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board person1 plane1 city1

pre: person1 loc = city1 loc ∧ plane1 loc = city1 loc
eff: person1 loc := plane1 id;

onboard1 := add elem(onboard1, person1 id)

fly city1 city2

pre: plane1 loc = city1 loc ∧
fuel1 > burn rate ∗ cardinality(onboard1)

eff: plane1 loc := city2 loc;
fuel1 := fuel1− burn rate ∗ cardinality(onboard1);

Figure 1. Example actions in an air-travel problem, with finite-
domain, numeric, and set-valued variables.

2.1. Action Semantics

Assignment can be assumed to follow the standard seman-
tics for imperative languages. Predicates and functions used
in planning domains typically include testing if a Boolean
variable is false or true, along with arithmetic operations
(Fox & Long, 2003), but can be defined for new datatypes
as necessary (Gregory et al., 2012). Since assignments in
the effect eff(a) of an action a must be non-conflicting,
eff(a) corresponds to parallel execution of each assign-
ment. We can hence specify a denotational semantics for
a by identifying it with a relation over states (S, T ) ∈ a,
where pre(a) |= S, and T is the result of applying eff(a)
to S. This is equivalent to the semantics for atomic actions
in concurrent programs by Lamport (1990). Alternatively,
actions can be seen as (guarded) primitive commands in a do-
main specific imperative language, with semantics defined
by condition-checking and assignment as sub-primitives.
Two example actions are shown in Figure 1.

2.2. Planning Algorithms

Common approaches to solving symbolic planning prob-
lems include backward search from the goal G, or forward
best-first search from the initial state I (Bonet & Geffner,
2001), with the fastest planners typically relying on variants
of forward A* search guided by highly informative heuris-
tics (Helmert, 2006), along with compilation techniques
for speed and memory efficiency (Helmert, 2009; Zhi-Xuan,
2022). Heuristic-guided search can also be extended to prob-
abilistic and partially observable domains, using algorithms
such as Real Time Dynamic Programming (RTDP) (Bonet
& Geffner, 2003) and Trial-based Heuristic Tree Search
(THTS) (Keller & Helmert, 2013).

3. Abstract Semantics for Symbolic Planning
In order to perform abstract interpretation over symbolic
world models, we need an abstraction function α(·) that
maps a concrete set of states S to an abstract state S♯, along
with a concretization function γ(·) s.t. S ⊆ γ(α(S)), where
each concrete state S ∈ S is a complete assignment of val-
ues to the variables V of the planning problem. In addition,

we have to provide abstract semantics for each action, effec-
tively abstract actions a♯ that define a relation over abstract
states (S♯, T ♯) ∈ a♯. We now describe several abstractions
that are useful for deriving heuristics .

3.1. State Abstractions

Cartesian Abstraction. One approach to abstracting states
is to assign an abstract value to each variable v ∈ V , repre-
senting a set of concrete values v could take. For example,
the numeric variable fuel1 in Figure 1 could be assigned
the interval value [0, 1000). Doing this for each variable
produces a Cartesian abstraction: Given the values in an
abstract state S♯, the corresponding set of concrete states
γ(S♯) is just the Cartesian product of sets associated with
each abstract value (Ball et al., 2001).

Predicate Abstraction. Another approach is to consider the
set of all predicates P that feature in action preconditions
pre(a) for all a ∈ A, or the goal specification G. We
define abstract states to be sets of these predicates S♯ ⊆
P , corresponding to the set of concrete states where every
predicate in the abstract state holds true. The advantage of
this abstraction is that it can be easily used to determine if
an action is executable, of if the goal is achieved.

3.2. Action Abstractions

State-Induced. Given abstraction and concretization func-
tions α and γ, this induces a corresponding abstract action
a♯ for each action a: Given an abstract state S♯, we have
(S♯, T ♯) ∈ a♯ where T ♯ := α({T | S ∈ γ(S♯), (S, T ) ∈
a}). This can be efficiently implemented for Cartesian ab-
stractions when the right-hand-side of all assignments in an
action is constant, since the result of applying such an action
is a specific concrete state which can then be abstracted.

Widening-Based. Given a Cartesian state abstraction, a
more relaxed abstraction is to replace each assignment v :=
E in a concrete action a with v := v▽E, where E is an
expression and ▽ is a choice of widening operator associated
with the value abstraction for variable v (Gregory et al.,
2012). In the case where v is Boolean or has a finite domain,
a natural abstraction for v is to replace the domain of v
with its powerset (e.g., allowing a Boolean v to be true
and false at the same time), using the join operator ⊔ as a
widening. Other choices are necessary when v is numeric
and unbounded, e.g. delayed widening (Miné, 2017).

Widening-based abstract actions can be directly applied to
Cartesian state abstractions, since they modify each state
variable independently. They can also be extended to com-
bined Cartesian and predicate abstractions, where each ab-
stract state S♯ = (X♯, P ) comprises both abstract assign-
ments X♯ and predicates P . The successor of applying some
action a♯ is then (▽aX

♯, Q), where ▽aX
♯ is the widened
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(a) Abstract Interpretation for
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(b) Abstract Planning for
Goal Reachability and Heuristic Estimation

Figure 2. A graphical analogy between (a) abstract interpretation for error detection and (b) abstract planning for goal reachability. In
abstract interpretation, over-approximating the set of reachable states via abstract steps allows us to rule out impossible errors. In abstract
planning, we can similarly rule out some goals as unreachable, or otherwise estimate how many steps it takes to reach them.

set of assignments, and Q is the largest set of predicates in
P which hold true for at least some concrete s ∈ γ(▽aX

♯).
Note that P ⊆ Q by construction (widening can only cause
more predicates to be true), and Q can be computed effi-
ciently from P and eff(a♯) by checking and adding only
the predicates in P that are affected by eff(a♯).

4. Deriving Heuristics via Abstraction
Having described several abstractions for symbolic world
models, we now illustrate how they can be used to derive
multiple families of planning heuristics developed in the
literature. We discuss novel extensions along the way.

4.1. Relaxed Reachability via Widening

As shown in Figure 2, determining the reachability of a goal
condition in symbolic planning can be viewed as analogous
to determining the reachability of an error in program ver-
ification. This analysis can be performed by imagining a
non-deterministic search procedure that repeatedly applies
all executable actions at once, then over-approximating that
search process by merging the results of all actions. As
noted by Gregory et al. (2012), this is equivalent to repeat-
edly applying widened versions of the actions until a goal
condition or fixpoint is reached (though they do not describe
it in terms of abstract interpretation). The number of itera-
tions required serves as a lower bound on the true number
of steps to the goal, and hence an optimistic heuristic esti-
mate that can guide search. Indeed, when all variables are
propositional, this is equivalent to the hmax delete relaxation
heuristic introduced by Bonet & Geffner (2001).

One issues with this analysis is that it may not terminate if
variables have infinite domains and the widening operator ▽
is not appropriately chosen. To address this, Gregory et al.
(2012) employ an equivalent of delayed widening. However,
many other widening strategies have been used in abstract in-
terpretation, such as widening with thresholds (Miné, 2017),
that could lead to improved trade-offs between informative-
ness and convergence time when computing the heuristic.

4.2. Relaxed Reachability over Predicate Sets

An alternative formulation of the widening-based reachabil-
ity analysis is to consider planning over predicate sets using
the predicate abstraction described earlier. More specif-
ically, consider the (abstract) state space graph induced
by the combined Cartesian and predicate abstraction, with
states S♯ = (X♯, P ). Following Haslum & Geffner (2000),
finding the shortest path to a goal-satisfying state in the
original problem is equivalent to finding the shortest path to
an abstract state (X♯, P ) where P = G (we assume w.l.o.g.
that the goal G is a conjunction of predicates).

Now we perform several relaxations on this state space
graph. First, we add edges corresponding to the widened
actions described earlier, such that (X♯, P ) connects to
(▽aX

♯, Q) for a widened action a♯. Next, for every node
(X♯, P ) that has (▽aX

♯, Q) as a successor, we add an edge
from (X♯, P ) to each node (·, R) where Q → R. Finally,
for each node (X♯, Q), we add a zero-cost edge from every
single-predicate node (·, R) s.t. R ⊆ Q and |R| = 1. These
relaxations achieve the following facts:
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• The cost of the shortest path in the relaxed graph C
is now less than the cost of the shortest path in the
original problem C∗.

• By the second relaxation, we can reach every single-
predicate node (·, R), |R| = 1 with less than or equal
cost to reaching a multi-predicate node.

• By the third relaxation, we can compute the cost of
reaching any multi-predicate node C(·, Q) as the max
over costs of achieving each predicate in that node:

C(·, Q) = max
R⊆Q,|R|=1

C(·, R)

When all variables V are propositional, and the right hand
sides of all assignments are constant, this again recovers
the hmax heuristic, reformulated as the the h1 heuristic in
Haslum & Geffner (2000). However, by incorporating the
widening-based abstraction from earlier, this generalizes the
heuristic to numeric variables, or any other datatype with
an effective abstraction (e.g. approximating geometric sets
with zonotopes (Bogomolov et al., 2019)). Furthermore, this
derivation allows for a number of simple modifications, such
as computing the cost of achieving a multi-predicate node
as the sum instead of the maximum over the costs of each
individual predicate. This gives a generalized version of
the widely used additive heuristic hadd, subsuming existing
work on numeric subgoaling heuristics (Scala et al., 2020).
While the result heuristic is non-admissible, it is generally
much more informative and useful for search.

4.3. Counterexample Guided Abstraction Refinement

A final class of abstraction heuristics enabled by abstract
interpretation is counter-example guided abstraction refine-
ment (CEGAR) (Seipp & Helmert, 2018). Starting with
a coarse-grained Cartesian abstraction, one can solve for
abstract plans to estimate the distance to the goal, and then
iteratively refine the abstraction when counterexamples to
the correctness of the abstraction are found. Each time af-
ter refinement, heuristic values obtained from the previous
iteration can be used to guide search in the current itera-
tion, leading to a rapid iterative approach that automatically
constructs useful abstractions for planning.

However, CEGAR heuristics have so far been limited to
problems with propositional variables, and CEGAR-like
algorithms have only recently been explored in symbolic-
geometric contexts for task and motion planning (Thomason
& Kress-Gazit, 2021). By leveraging abstract semantics
introduced for other datatypes in program analysis, it may
be possible to extend the reach of such heuristics to a broader
array of problems and domains.

5. Other Extensions and Applications
Thus far, we have focused on how abstract interpretation
can be used to derive more general heuristics for forward
search. However, there are many other possible applications
of abstract interpretation, which we briefly reflect upon here.

5.1. Uncertainty and Learning

As noted earlier, heuristics can be used within algorithms
such as Real Time Dynamic Programming (RTDP) (Bonet
& Geffner, 2003) and Trial-based Heuristic Tree Search
(THTS) (Keller & Helmert, 2013) that operate over stochas-
tic domains, using them to initialize an estimate of the value
function for the underlying Markov Decision Process. To
derive these heuristics from formal analysis of domains
with probabilistic effects, the simplest abstraction would
be to assume that all branches of a (discrete) probabilistic
choice occur at once. This would effectively relax the prob-
lem, enabling the computation of admissible heuristics that
guarantee eventual convergence to the true value function
(Barto et al., 1995). For continuous probability distributions
with bounded support, it would also be possible to abstract
distributions with their upper and lower bounds.

Using abstraction heuristics to initialize value functions is
closely related to the idea of using heuristics as a learning
target for neural network estimators of expected value (Shen
et al., 2020; Gehring et al., 2021). This would allow agents
to jumpstart planning in novel world models via abstraction-
derived information that is later refined by experience.

5.2. Reverse Interpretation for Bidirectional Search

Abstract interpretation can be executed in reverse (Hughes,
1987; Monniaux, 2001), allowing for generalizations of
backward search and heuristic construction to domains with
non-propositional variables. This might allow for novel
combinations of (abstract) backwards search with (concrete)
forward search, as has been explored in robotics (Garrett
et al., 2018) and program analysis (Dinges & Agha, 2014).

5.3. Abstract Interpretation for Generalized Planning

Generalized plans, or policies, often take the form of imper-
ative programs with control flow (Andre & Russell, 2002;
Jiménez et al., 2019; Segovia-Aguas et al., 2021). This
suggests that abstraction-guided program synthesis methods
(Solar-Lezama, 2008; Srivastava et al., 2010; Wang et al.,
2017) can also be used for generalized planning.

This extended abstract presents only an initial foray into
the manifold connections between abstract interpretation
(AI) and artificially intelligent (AI) planning. We hope that
illustrating some of these connections lays the ground for
future interdisciplinary work.
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