
Genify.jl: Transforming Julia into Gen
to enable programmable inference

Tan Zhi-Xuan
Massachusetts Institute of Technology

xuan@mit.edu

McCoy R. Becker
Charles River Analytics

mbecker@cra.com

Vikash K. Mansinghka
Massachusetts Institute of Technology

vkm@mit.edu

1 Introduction
There exists a wide variety of stochastic simulators written

in Julia for the purposes of modeling natural, social, or eco-
nomic phenomena [1–6]. However, these simulators are not
generally amenable to efficient algorithms for Bayesian infer-
ence, as they do not provide likelihoods for execution traces,
support the ability to constrain internal random variables,
or allow random choices and subroutines to be selectively
updated in Monte Carlo algorithms. As a result, inference
is either limited to black-box methods such as approximate
Bayesian computation [7], or implemented from scratch,
which can be intensive and error-prone.

To address these limitations, we present Genify.jl, an ap-
proach to transforming Julia code into generative functions
in Gen, a probabilistic programming platform implemented
in Julia [8]. We accomplish this via staged compilation of
lowered Julia code into Gen’s dynamic modeling language,
combined with a user-friendly random variable addressing
scheme that enables straightforward implementation of cus-
tom inference programs. Unlike prior approaches that make

Code Address
function step!(model, agent_step!) :step!

>> i = 0
for agent in values(model.agents)

>> i += 1
agent_step!(model.agents[index], model) :agent_step! => i

end
end

function agent_step!(agent, model) :agent_step! => i
migrate!(agent, model) :migrate!
transmit!(agent, model) :transmit!
update!(agent, model) :update!
recover!(agent, model) :recover!

end

function migrate!(agent, model) :migrate!
p = agent.pos
d = Categorical(model.migration_rates[p, :])
m = rand(d) ->> m ~ categorical(...) :m
if (m != p) move_agent!(agent, m, model) end

end

Figure 1. Julia code excerpt of an Agents.jl SIR model of a
viral epidemic. Genify.jl transforms the top-level function
step! into a Gen model by: (i) recursively transforming all
subroutines, (ii) forwarding (-») random primitives to the ap-
propriate Gen primitives, (iii) inserting (») loop counters, and
(iv) automatically generating address names. Each function
is given a address namespace (violet), within which the ad-
dresses of subroutines and primitives are nested (magenta).

existing simulators controllable by probabilistic program-
ming systems [9–12], our approach is designed to support
programmable inference [8, 13]. This allows users to rapidly
implement and iterate upon inference algorithms that are
customized to simulators. We demonstrate the utility of this
approach by transforming and performing parameter estima-
tion over an agent-based epidemic model implemented in the
Agents.jl framework [4]. We use Gen to implement generic
and custom sequential Monte Carlo (SMC) andMarkov chain
Monte Carlo (MCMC) algorithms for this simulator, showing
that custom inference improves performance significantly.

2 Code transformation
Our approach to code transformation exploits the multi-
stage programming and reflection features supported by
Julia. Given a function f and the types of its arguments, one
can introspect the body of the function before type inference
to acquire a lowered representation of the corresponding
method. This method representation is in static single as-
signment (SSA IR) form. We apply the automatic addressing
transform by walking the IR and replacing all calls to random
primitives (rand, randn, etc. in Julia) with calls to primitive
distributions in Gen (uniform, normal, etc.), annotated with
automatically generated address names. The transformation
is applied recursively, by acquiring a SSA representation of
all non-primitive calls in the method body and repeating the
process. Figure 1 shows an example of this process. Transfor-
mation occurs during just-in-time (JIT) compilation using
a staging mechanism in Julia called generated functions. JIT
compilation ensures that performance overhead is minimal,
but also provides many of the benefits of non-standard in-
terpretation at run-time. In particular, if the original method
is modified during development, the transformed method is
automatically recompiled upon its next execution.

3 Automatic addressing
To facilitate programmable inference, random variables re-
quire user-friendly addresses. Automatic addressing should
thus strive for consistency, readability, and correspondence
with the source code so that a programmer familiar with the
original code can deduce the address that corresponds to a
given stochastic routine. We achieve this via the following
scheme: following the hierarchical address format used by
Gen [8], a subroutine g of f gets a nested address namespace
:f => :g. Where possible, we set the address of a random



Tan Zhi-Xuan, McCoy R. Becker, and Vikash K. Mansinghka

1 gen_step! = genify(step!, AgentBasedModel, Any)
2 @gen function bayesian_sir(T::Int, noise::Float64)
3 β ~ uniform_continuous(0, 2.0)
4 model = model_initiation(β, city_populations=[50, 50, 50])
5 for t in 1:T
6 {:step => t=> :agents} ~ gen_step!(model, agent_step!)
7 {:step => t => :obs} ~ observe(model, noise)
8 end
9 end
10 @gen function observe(model::AgentBasedModel, noise::Float64)
11 for city in nodes(model)
12 {:infected => city} ~ normal(n_infected(model, city), noise)
13 {:recovered => city} ~ normal(n_recovered(model, city), noise)
14 end
15 for a in agents(model)
16 {:location => a.id} ~ noisy_delta(a.pos, n_cities(model), 0.01)
17 end
18 end

(a) Bayesian agent-based SIR model

Count

Time

City 1

City 2

City 3

infer−−−→

(b) Observations, model topology, and inferences

Algorithm 𝛽 (Mean ± Std.) 𝛽 RMSE Log Prob. Time (s)

Resimulation MH 1.17 ± 0.64 0.90 -22552 120
Block MH 0.75 ± 0.55 0.58 -21754 270
Basic SMC 0.69 ± 0.23 0.29 -19986 44

Data-driven SMC 0.51 ± 0.10 0.09 -5164 59

(c) Inference results (𝛽true = 0.5, 𝑛iters or 𝑛particles = 100)

1 function block_mh(T, observations, n_iters, noise, blocklen)
2 trace, _ = generate(bayesian_sir, (T, noise), observations)
3 # Block addresses by time and process (migration / transmission)
4 block_addrs = [select([:step=>t=>:agents=>:step!=>:agent_step!=>i=>fn
5 for t in block for i in agents(model)]...)
6 for block in partition(1:T, blocklen)
7 for fn in (:migrate!, transmit!)]
8 # Alternate between resimulation of parameters and blocks
9 for i in 2:n_iters
10 trace, _ = metropolis_hastings(trace, select(:β))
11 for block in block_addrs
12 trace, _ = metropolis_hastings(trace, block)
13 end
14 end
15 return trace
16 end

(d) Block MH with time and sub-routine blocking

1 function data_driven_smc(T, observations, n_particles, noise)
2 # Initialize particle filter
3 state = pf_initialize(bayesian_sir, (0, noise),
4 choicemap(), n_particles)
5 for t=1:T
6 # Extend the filter by one step using a custom migration proposal
7 pf_update!(state, (t, noise), (UnknownChange(), NoChange()),
8 observations[t], migrate_proposal, (t, observations))
9 end
10 return state
11 end
12
13 @gen function migrate_proposal(prev_trace, t, observations)
14 # Use observed locations to propose to true locations for each agent
15 for i in 1:n_agents(prev_trace)
16 loc = observations[:step => t => :obs => :location => i]
17 {:step=>t=>:agents=>:step!=>:agent_step!=>i=>:migrate!=>:m} ~
18 noisy_delta(loc, n_cities(prev_trace), 0.01)
19 end
20 end

(e) Data-driven SMC with migration proposals

Figure 2.Modeling and inference over an inference-unaware SIR model. (a)We transform the Agents.jl step! function (a1) to
construct a hierarchical Gen model with parameter uncertainty (a3) and observation noise (a10). (b) Given case counts, agent
locations (not shown) and model structure, we infer the infection rate 𝛽 . Using custom MCMC (d) and SMC (e) programs that
resimulate (d4) or propose (e17) internal randomness, we achieve (c) better results than generic PPL algorithms.

call to the name of the variable it is assigned to (e.g. z =
randn() gets the name :z). Otherwise, we use the name of
the called function. For repeated names, we append indices
to ensure uniqueness. Finally, for variables sampled within
loops, we insert loop counters into the IR and append the
counters to the address of each in-loop random variable.

4 Experiments
To demonstrate the utility of programmable inference for
Julia simulators, we transform an agent-based Susceptible-
Infected-Recovered (SIR) model of virus spread written in the
Agents.jl framework [4]. We then use this simulator in a Gen
model with parameter uncertainty and observation noise
(Figure 2a). Our inference task is as follows: given infection
and recovery counts in three connected cities with 50 agents
each (Figure 2b), as well as location data for 75% of the agents
(e.g. from opt-in contact tracing), infer the infection rate 𝛽 .

We implement four inference algorithms using Gen to
solve this task. Two are generic1: (1) Cascading resimula-
tion Metropolis-Hastings (MH) [14], which can be used with
1We also implemented single-site MH as a generic algorithm [9], but found
that even a single iteration over all 15001 latent variables led to minimal
convergence while running 16–100 times slower than the other algorithms.

likelihood-free simulators, and (2) ‘basic’ SMC with propos-
als from the prior (no resampling). Two are custom, requir-
ing transformation into Gen to manipulate internal random
variables: (3) block resimulation MH [15], where variables in-
ternal to the simulator are blocked by both time and process
(migration or transmission), and (4) data-driven SMC with
custom migration proposals. These proposals are based on
the observed locations of agents when available. In Figure
2c, we demonstrate that our custom algorithms out-perform
the corresponding generic algorithms in root mean squared
error (RMSE) for a fixed number of 100 iterations or particles,
albeit with mildly higher runtime cost. Our data-driven SMC
algorithm appears particularly efficient, recovering the true
value 𝛽 = 0.5 with little overhead relative to basic SMC.

5 Future Work
We plan to extend this work in several promising directions:
compilation into Gen’s static modeling language and gener-
ative function combinators, enabling incremental computa-
tion by identifying variable dependencies, program analysis
to determine when random variables should share the same
addresses, and user-friendly address exploration via anno-
tated source-code visualizations.



Genify.jl: Transforming Julia into Gen to enable programmable inference

6 Acknowledgements
We thank Alex Lew and Marco Cusumano-Towner for their
constructive suggestions and advice on program transforma-
tion into probabilistic programming systems.

References
[1] Jesse Perla, Thomas Sargent, and John Stachurski. Quantitative eco-

nomics with Julia. QuantEcon, 2015.
[2] Maxim Egorov, Zachary N. Sunberg, Edward Balaban, Tim A. Wheeler,

Jayesh K. Gupta, and Mykel J. Kochenderfer. POMDPs.jl: A framework
for sequential decision making under uncertainty. Journal of Machine
Learning Research, 18(26):1–5, 2017.

[3] Alfonso Landeros, Timothy Stutz, Kevin L Keys, Alexander Alek-
seyenko, Janet S Sinsheimer, Kenneth Lange, andMary E Sehl. Biosimu-
lator. jl: Stochastic simulation in julia. Computer methods and programs
in biomedicine, 167:23–35, 2018.

[4] Ali R Vahdati. Agents. jl: agent-based modeling framework in julia.
Journal of Open Source Software, 4(42):1611, 2019.

[5] Justin Angevaare, Zeny Feng, and Rob Deardon. Pathogen. jl: Infec-
tious disease transmission networkmodelling with julia. arXiv preprint
arXiv:2002.05850, 2020.

[6] Jeffrey Regier, Andrew C Miller, David Schlegel, Ryan P Adams, Jon D
McAuliffe, et al. Approximate inference for constructing astronomical
catalogs from images. The Annals of Applied Statistics, 13(3):1884–1926,
2019.

[7] Mark A Beaumont, Wenyang Zhang, and David J Balding. Ap-
proximate bayesian computation in population genetics. Genetics,
162(4):2025–2035, 2002.

[8] Marco F Cusumano-Towner, Feras A Saad, Alexander K Lew, and
Vikash K Mansinghka. Gen: a general-purpose probabilistic program-
ming system with programmable inference. In Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 221–236, 2019.

[9] David Wingate, Andreas Stuhlmüller, and Noah Goodman. Light-
weight implementations of probabilistic programming languages via
transformational compilation. In Proceedings of the Fourteenth Interna-
tional Conference on Artificial Intelligence and Statistics, pages 770–778,
2011.

[10] Bradley Gram-Hansen, Christian Schröder de Witt, Tom Rainforth,
Philip HS Torr, Yee Whye Teh, and Atılım Güneş Baydin. Hijacking
malaria simulators with probabilistic programming. arXiv preprint
arXiv:1905.12432, 2019.

[11] Atilim Gunes Baydin, Lei Shao, Wahid Bhimji, Lukas Heinrich, Saeid
Naderiparizi, Andreas Munk, Jialin Liu, Bradley Gram-Hansen, Gilles
Louppe, Lawrence Meadows, et al. Efficient probabilistic inference
in the quest for physics beyond the standard model. In Advances in
neural information processing systems, pages 5459–5472, 2019.

[12] Frank Wood, Andrew Warrington, Saeid Naderiparizi, Christian Weil-
bach, Vaden Masrani, William Harvey, Adam Scibior, Boyan Beronov,
and Ali Nasseri. Planning as inference in epidemiological models.
arXiv preprint arXiv:2003.13221, 2020.

[13] Vikash Mansinghka, Daniel Selsam, and Yura Perov. Venture: a higher-
order probabilistic programming platform with programmable infer-
ence. arXiv preprint arXiv:1404.0099, 2014.

[14] Marco F Cusumano-Towner, Alexey Radul, David Wingate, and
Vikash K Mansinghka. Probabilistic programs for inferring the goals
of autonomous agents. arXiv preprint arXiv:1704.04977, 2017.

[15] Daniel J Sargent, James S Hodges, and Bradley P Carlin. Structured
Markov chain Monte Carlo. Journal of Computational and Graphical
Statistics, 9(2):217–234, 2000.


	1 Introduction
	2 Code transformation
	3 Automatic addressing
	4 Experiments
	5 Future Work
	6 Acknowledgements
	References

